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The importance of anions in biological and industrial processes
requires the development of inexpensive and reliable anion sensors.1

In this regard, sensors that utilize a change in optical properties
for signaling are being increasingly appreciated.2

Octamethylcalix[4]pyrrole (OMCP),3 an easy-to-make, colorless
macrocycle containing four pyrrole NHs as hydrogen bond donors
is an ideal candidate for the preparation of optical anion sensors.
Indeed, several OMCP derivatives displaying anion-induced changes
in either color4aor fluorescence4b have been synthesized by attaching
pre-existing chromophores to the OMCP. Unfortunately, this
approach proved too costly, and together with the fact that these
materials could not be used in aqueous environments, precluded
their application as anion sensors.

We were not ready to give up on OMCP, yet, and designed
chromogenic anion sensors utilizing a combination of the OMCP
pyrrole with nonchromophoric dye precursors to form the reporter
chromophore. These sensors can be synthesized in a few steps and
detect anions administered in the form of aqueous solutions, as well
as in the presence of other ionic species/electrolytes.

The obvious advantages of this approach are the ease and high
yield of the OMCP synthesis together with its electron-rich pyrrole
moieties, a variety of available dye precursors, and time-proven
reliable transformations. Additionally, this approach is generally
applicable to other receptors comprising aromatic moieties.5 Also,
an effective change in color upon anion binding is expected because
the anion binding to the pyrrole moiety of the dye is expected to
induce a large change of electronic density in the chromophore as
a result of partial negative charge (δ-) transfer.3a Three examples
of such materials are sensors1-3.

Sensor1 was prepared by an electrophilic aromatic substitution
reaction of OMCP with tetracyanoethylene. Sensors2 and3 were
obtained by condensation of formyl-OMCP6 with 1-indanylidene-
malononitrile and anthrone, respectively.

The anion sensing ability of sensors1, 2, and3 was studied on
a qualitative level by visual examination of the anion-induced color
changes in the solution of sensors1-3 (50 µM in DMSO/0.5%
water) before and after the addition of an anion. Sensors1-3
showed dramatic color changes in the presence of fluoride, acetate,
pyrophosphate, and also phosphate, suggesting strong binding
(Figure 1). Conversely, the addition of chloride, bromide, iodide,
or nitrate resulted in no change in color. To demonstrate the
relevance of sensors1-3 to health care applications,1 we performed
the sensing experiments at a high electrolyte concentration and in
blood plasma. Furthermore, studies with carboxylates of medical

interest (salicylate, ibuprofen, naproxen) were performed using a
newly developed assay with sensors1-3 embedded in polyurethane
films.

Absorption spectroscopy titration experiments revealed large
bathochromic shifts of spectra of sensors1-3 upon addition of
anions corresponding to changes in color. Such large red shifts can
be attributed to a partial charge transfer resulting from the anion
being bound to the NH proton of the pyrrole constituting the
chromophore.4a The titration experiments provided the necessary
quantitative insight into sensor-anion complexation. The respective
binding constants for complexation of sensors1-3 and various
anions are shown in Table 1.

Figure 1. Left panels show sensors1-3 (50µM in DMSO) in the presence
of anions in DMSO (10 equiv excess). Right panels show examples of
changes in absorption spectra of1-3 in the presence of selected anions.

Table 1. Affinity Constantsa for Sensors 1, 2, and 3 (M-1)
Calculated for Anionic Substrates in DMSO (0.5% of water) at 22
°C7

Binding Constant K/M-1

anion sensor 1 sensor 2 sensor 3

F- >106b >106 507000
Cl- 1370 759 953
AcO- 242000 22100 10400
HP2O7

3-c 584000 48200 >104b

H2PO4
- 5230 5560 4490

a All errors are<(15%. b Binding isotherms show biphasic behavior.
c Ka was calculated assuming that pyrophosphate forms a dimer in DMSO.8
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From Table 1, one can see that the sensors1-3 strongly bind
fluoride, acetate, pyrophosphate, and phosphate.3b,c Chloride,
bromide, iodide, or nitrate showed weak or negligible binding. The
strong anion binding is ascribed to the electron-withdrawing nature
of dye moieties. These moieties increase the acidity of the pyrrole
NH proton, which, in turn, enhances the availability of NHs for
hydrogen bonding and affinity of sensors toward anions.2b The1H
resonances of chromophore-modified pyrrole NHs in sensors1, 2,
and3 appear at 7.61, 7.37, and 7.34 (δ scale in CDCl3), respectively,
which correlates with the trend in sensor-anion affinity, as reflected
by the binding constants.

To prove that the observed changes in color are caused by anion
binding, and not by deprotonation of the acidic NH proton in the
dye pyrrole,9 we performed1H NMR titrations. The observed down-
field shifts of the pyrrole NH resonances are an indication of hydro-
gen bonding to an anion, as well as simplification of the pyrrole CH
signals, a characteristic for transition from 1,3-alternate to a sym-
metrical conelike conformation.10 Figure 2 shows1H NMR spec-
tra of sensor1 (a) and its complexes with anions (b-d), confirming
that the color changes are the result of the anion-sensor association.

Strong selectivity of sensors1-3 for carboxylates such as acetate
and also for pyrophosphate compared to that of chloride and
phosphate prompted us to investigate carboxylate sensing in the
presence of chloride and/or phosphate. Such sensors may allow
for sensing of carboxylates in blood plasma, which at physiological
conditions, contains 0.1 M Cl- and 2 mM HPO4

2-.1b To explore
the effect of water as a typical solvent for anions as well as the
possible interference of competing anions, such as chloride, we
performed the acetate sensing in a plasma-like aqueous solution
(PLAS: 0.1 M Cl-, 2 mM HPO4

2-, 0.1 M Na+, 4 mM K+, pH )
7.4) and also PLAS containing bovine serum albumin (PLAS-
BSA: 0.1 M Cl-, 2 mM HPO4

2-, 0.1 M Na+, 4 mM K+, 46 g/L
BSA, pH ) 7.4).1b Figure 3 (left panel) shows the color changes
and absorbance traces recorded for sensor1 (blank), sensor1 upon
addition of PLAS-BSA (A), and PLAS-BSA containing acetate
(B).11 These data show that sensor1 can be used for detecting
carboxylate anions added as an aqueous solution of ionic strength
and pH corresponding to blood plasma.

Equally encouraging are the results of assays utilizing the sensors
1-3 embedded in polymer matrices.12 Figure 3 (right panel) shows
an example of a multi-well assay using polyurethane films with
embedded sensor2. The polyurethane serves a dual purpose; it
physically screens off the blood plasma protein carboxylates, such
as C-termini, while its relatively hydrophobic nature precludes the
hydrophilic anions (e.g., HCO3-) from penetrating the film and
biasing the embedded sensors. Relatively lipophilic aromatic
carboxylates seem to penetrate matrix and interact with the sensor,
thus producing characteristic changes in polymer film color (Figure
3). The affinity order was as follows: naproxen≈ ibuprofeng
salicylate13 > laurate> acetate (solutions in PLAS), while no
interaction was observed with PLAS alone, HCO3

- in PLAS,
PLAS-BSA, or blood plasma.

In summary, we have demonstrated that calixpyrrole-based
chromogenic sensors may be prepared via electrophilic aromatic
substitution. The chromogenic OMCPs sense preferentially car-
boxylate and pyrophosphate anions with high affinity and selectiv-
ity, while showing dramatic change in color, even at high ionic
strength (∼0.1 M NaCl). The preliminary experiments with
polyurethane sensor films show a strong response to aqueous
antipyretic carboxylates, such as naproxen, ibuprofen, or salicylate,13

while not responding to chloride, bicarbonate, and carboxy termini
in proteins of blood plasma. Further experiments toward sensing
of carboxylates in biological fluids are underway.
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Figure 3. Left: Spectral changes of sensor1 (50 µM in DMSO, 2 mL)
upon addition of 10µL of (A) PLAS-BSA and (B) PLAS-BSA containing
acetate (4-40 mM), pH ) 7.4. Inset: Color changes of sensor1 upon
addition of A and B. Right: Sensor2 in polyurethane. PLAS solutions (25
µL) of anions (10 mM), BSA (46 g/L), all at pH) 7.4, and blood plasma
were applied on polyurethane films.

Figure 2. 1H NMR spectra of sensor1 (a) and complexes1/F- (b), 1/AcO-

(c), and1/HP2O7
3- (d) recorded in DMSO-d6 (0.5% water).
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